Dear forum members,
I created this post to share my motorized kayak building experience using several BR electronics components. Firstly, I want to set the context for the still ongoing project: as a water resources engineer living/working in Paraguay -a country blessed with an abundance of surface water resources- I almost always get confronted with a lack of available hydrometric data (flow, depth, etc.). Although there exist commercial survey packages for these types of measurements, locally there are additional challenges for which I prefer to build my own tool. Firstly, in addition to the already high cost of the commercial tools, importing them into Paraguay makes it a lot more expensive and cumbersome. Secondly, once one small piece breaks down or there is any need for reparation, you get stuck as locally there is no representation/support. The context of application is challenging, hence you donât want to depend on sophisticated, third-party tools that you are not able to fix by yourself, particularly when you do not have access to spare parts (at a reasonable price and âas quick as possibleâ when you need them).
The majority of reservoirs, irrigation channels and rivers in Paraguay require a large and robust platform to cope with the waves. I have been following RB for already some years and I really like the compatibility and accessibility of their electronics components. Being inspired by earlier work on motorized kayaks presented and discussed on this forum, I decided to buy 2 T200 and a âkidâ kayak. I decided not to drill holes in the kayak as I do not have experience with the waterproof closing afterwards. Both the propulsion part (on the backside) as well as the electronic cages are attached to an acrylic plate, which is connected at different points to the kayak by means of tie-wraps. In addition, bungee cords were used to increase the pressure. The sensors to be used can be attached on the bar foreseen on the frontside.
What took most time? The T200 were easy to connect/install due to the online tutorials. I spend quite some time in understanding better the âmixingâ of channels of the RC control to operate 2 motors with one stick. I finally ended up using a V-tail mixer, so up to now I did not have to dig into the programming of the RC control. Secondly, it took me a lot of trial&error to be able to connect and run the ping sonar with Arduino MEGA (including local storage of measurements). My children allowed me to experiment in their portable swimming pool in our garden. During this period, I had a lot of issues with the data collection with the MEGA and ping sonar: it took a lot of time to initiate the ping sonar, and often it would never start reading although correctly wired. One hypothesis was that the water in the swimming pool was not deep enough (according to technical specifications BR site this is minimum 50 cm). However, sometimes it works surprisingly well, hence then it is always tricky to know what the problem exactly is. Although not having resolved this issue, I decided to take the kayak for a first trial in âopen waterâ, being the Paraguay River the closest to where I am living (+/-1.000 m from the river side). I decided to firstly test the motorization. I did not have my swimming short with me and, although of a very short duration, this year winter is being very cold. But I had trust in the BR thrustersâŠ.Following short videos give some quick idea about the behavior of the kayak in the water:
There was some influence from waves generated from ships, but it performed well. Afterwards, I tried to get the ping sonar to work to test this as well (in deeper water), but I was not lucky and again the MEGA could not start reading the ping sonar. After checking today several recent posts on this topics, I guess the probability is likely that the software serial communication at 115200 baud rate is giving this problem, so I will try now with a hardware serial port. Once my âproof of conceptâ is functional, I would like to make a slightly smaller hull (for easier transport) and make the tool as ârobustâ as possible so it can serve for a challenging environment. I hope to come back soon to this forum and hear your suggestions/recommendations for this second step of the projectâŠ.Thanks to all persons that in the past have shared their building stories: it really helped throughout the process when getting stuck.